The Palms of Belize: Species Richness and a Key Based on Vegetative Characters

Steven W. Brewer
Section of Evolution and Ecology, One Shields Avenue University of California, Davis, California 95616
Fax:530-752-1449; e-mail: swbrewer@ucdavis.edu

Belize (formerly British Honduras) lies between $15^{\circ} 53^{\prime}$ and $18^{\circ} 30^{\prime} \mathrm{N}$ latitude and is the second smallest country in mainland America. When its small area is taken into account, Belize is above average for number of palm species and well above average for number of genera among tropical American countries (Figure la and b respectively). Six of Belize's 38 palm species are restricted in their range to one or two neighboring countries. One of these species (Schippia concolor) is endemic, and Pseudophoenix sargentii is considered endangered in the Yucatan peninsula (Durán 1995). Colpothrinax cookii has a very patchy distribution among Guatemala, Costa Rica, and Panama.

Perhaps the relatively high species richness of Belize is due to a great variety of vegetation types packed into a small area, from savanna and drought-deciduous scrub to evergreen wet forests. Annual rainfall and topography is also highly variable in Belize, ranging from approximately 1350 mm in the lowland north to well over 4000 mm in the mountainous south.

Furthermore, Belize is politically stable, is sympathetic to conservation and scientific research, and gives a large proportion of its land some degree of protected status. Consequently, this sparsely populated country has experienced a great increase in biological research and ecotourism. Unfortunately, an increase in the resources available for identification of woody plants in Belize using vegetative characters has not accompanied the growth of biological research and visitor interest. A notable exception is Balick and Johnson's (1994) vegetative key to the palmate-leaved palms of Belize.

The following key is a result of my work on a vegetative key to the trees of Belize. Nomenclature follows Henderson et al. (1995), and this key is meant to complement that comprehensive work. The key was developed from field observations, plus data and descriptions from Standley and Record (1936), Standley and Steyermark (1958), Balick and Johnson (1994), and Henderson et al. (1995). Those species reported by Henderson et al. (1995) for Belize (37 plus Colpothrinax cookii, reported by Meerman and Williams 1995 and reported as possibly in Belize by Henderson et al. 1995) are included in the key. Those species with reasonable potential to be found in Belize (8) are also included. Potential species are marked with an asterisk.

Although this key emphasizes vegetative characters, fruit characters (and occasionally inflorescence characters) are included in cases where persistent fruits (or inflorescences/infructescences, on the palm or ground beneath) are likely to enhance identification to species. Flower characters are included when useful vegetative characters may be weak or few. All identifications using this key should be confirmed with herbarium specimens, especially for the difficult genera Chamaedorea and Geonoma. It is strongly encouraged that suggestions for improvements to the key, new species records for Belize, and more consistent and/or easily observed vegetative characters for separating species in the field be sent to the author. Updated versions of the key based on such suggestions will be posted on the World Wide Web.

1. A regression of the number of (a) species and (b) genera on the area (in \log scale) for the mainland neotropical countries. $F G=$ French Guiana, $\mathrm{Gu}=$ Guatemala, $\mathrm{Gy}=$ Guyana, $\mathrm{Ho}=$ Honduras, $\mathrm{Ni}=$ Nicaragua, $\mathrm{Su}=$ Suriname .
A Key to the Palms of Belize

* denotes potential species

1. Leaves palmate (or "costapalmate"), i.e. fan-shaped2
2. Leaves pinnate, i.e. feather-shaped, or pinnatelyveined (in simple-leaved taxa)9
3. Stem armed with slender, often branched spines ...
Cryosophila stauracantha
4. Stem unarmed 3
5. Petioles armed with thorns or spines 4
6. Petioles unarmed 5
7. Stems clumped in groups of $2-15+$, covered withpersistent leaf bases; savannas and pine forests, oflow elevation in wet soils; leaves bright green aboveAcoelorraphe wrightii
8. Stems solitary (rarely clumped), only apically cov-ered with persistent leaf bases; on hill sides; leavesdull green (to glaucous) aboveBrahea dulcis
9. Leaves with a long rachis on which the segments attach (costapalmate); leaf sheaths and petioles conspicuously split lengthwise at the base; ripe fruits black.
10. Leaf blades with a very short rachis, or rachis absent; leaf sheath split or not at the base; ripe fruits black or notblack or not7
11. Segments joined for almost their entire length ingroups of $2-3$, the groups joined for about one-thirdtheir length; stem swollen at the base; inflorescencebranched to 4 orders; widespread, south of Corozal................................... . . Sabal mauritiiformis
12. Segments joined for one-half their length in groups of 2 (rarely 3), the groups joined for about one-sixth their length; stem not swollen at the base; inflorescence branched to 3 orders; northern Belize (Corozal district) Sabal yapa
13. Stem 20-35 cm diameter, often conspicuously swollen near the middle; leaf sheaths not split; ripe fruits brown or black Colpothrinax cookii
14. Stem smaller, usually $5-13 \mathrm{~cm}$ diameter, not swollen near the middle; ripe fruits white8
15. Leaf sheath and petiole conspicuously split length-wise; blade not bilobed; bark not corky .
Thrinax radiata
16. Leaf sheath and petiole inconspicuously splitlengthwise at the very base; blade divided to the baseinto 2 lobes; bark often corky Schippia concolor
17. Stems and/or leaves spiny 10
18. Stems and leaves without spines 15
19. Climbing palms; leaves with a whip-like extension of the rachis (cirrus) containing barb-like hooksDesmoncus orthacanthos
20. Arborescent palms to 4 m tall (or taller in the culti-vated Bactris gasipaes), cirrus absent11
21. Stems clumped, rarely solitary, mostly 6 cm diameter ($10-25 \mathrm{~cm}$ in Bactris gasipaes). 12
22. Stems solitary. 14
23. Found only in cultivation; stems $>6 \mathrm{~cm}$ diameter*Bactris gasipaes
24. Wild palms; stems $>6 \mathrm{~cm}$ diameter 13
25. Leaflets glabrous beneath, regularly arranged andspreading in the same plane; spines on sheath, peti-ole, and rachis <9 cm long; found in relatively dry,open habitats near groundwater; fruits purple-black
26. Leaflets often pubescent beneath, clustered and spreading in different planes; spines on sheath, petiole, and rachis to 15 cm long; in wet forest; fruits orange to red
. Bactris mexicana
27. Stems to 8 cm diameter, with whorls of flattened, black spines; fruits bristly; in lowland moist to wet forests Astrocaryum mexicanu
28. Stems $\geq 10 \mathrm{~cm}$ diameter, spines not flattened; fruits smooth; in open and/or disturbed areas of seasonal rainfall Acrocomia aculeata
29. Stems tall and stout, often much $>15 \mathrm{~cm}$ diameter, never cane-like (i.e. stem more or less uniform in color and leaf scars not prominent), solitary .
30. Stems slender ($<15 \mathrm{~cm}$ diameter) and usually canelike (i.e. with conspicuous, and contrasting or prominent leaf scars), solitary or clumped25
31. Cultivated, or naturally-occurring and most often found along beaches; stems often markedly curved; woody "coconuts" $>20 \mathrm{~cm}$ diameter Cocos nucifera
32. Naturally-occurring in a variety of habitats, rarely along beaches; stems usually straight; fleshy or woody fruits $<6 \mathrm{~cm}$ diameter.
33. Crownshaft, of closed (or partially closed) leaf sheaths, present; leaflets spreading in different planes (appearing plumose) or not
34. Crownshaft never present; leaflets not spreading in different planes
35. Leaves plumose, with leaflets spreading in different planes.
36. Leaves not plumose, leaflets in 1 row per side, not spreading in different planes (the tips may be pendulous, but not plumose).
37. Stems generally $>30 \mathrm{~cm}$ (to 60 cm) diameter; crownshaft conspicuous, of closed leaf sheaths; inflorescences born below the leaves 20
38. Stems usually smaller; crownshaft open, short; inflorescences born among the leaves21
39. Peduncular bract shorter than the crown-shaft; on wet soil in forest or open savanna, disturbed areas, also cultivated Roystonea regi
40. Peduncular bract \geq the crown-shaft; found on flooded soils in coastal swamps and estuaries. *Roystonea dunlapiana
41. Palms of the coastal plain, usually near the sea; leaflets somewhat glaucous, with brown scales beneath; inflorescence branched to 5 orders.
. Pseudophoenix sargentii subsp. sargentii
42. Widespread palms; leaflets not glaucous, without brown scales; inflorescence branched 1-2 orders . Gaussia maya
43. Montane palms with a partially closed (for $1 / 3$ to $1 / 2$ the length of the leaf sheaths), purplish or purplegreen crownshaft; stem brownish .
*Prestoea acuminata
44. Montane or lowland palms with conspicuously closed, green or yellowish crownshaft; stem gray Euterpe precatoria var. longevaginata
45. Leaves irregularly divided into wide leaflets with serrated apical margins; stems to 20 cm diameter; fruits covered with pyramidal protrusions.
. Manicaria saccifera
46. Leaves regularly divided into many narrow, entire leaflets; stems usually $>30 \mathrm{~cm}$ diameter; fruits smooth

24
24. Margins of leaf sheath and petiole naked; male flow-
ering branches short, $\geq 15 \mathrm{~cm}$; endocarp fibers in clusters Attalea cohune
24. Margins of leaf sheath and petiole with stout fibers; male flowering branches long, $30-50 \mathrm{~cm}$; endocarp fibers scattered *Attalea butyracea
25. Leaves simple 26
25. Leaves compound 33
26. Stems <1 cm diameter, clumped via rhizomes. *Chamaedorea brachypoda
26. Stems solitary, often $>1 \mathrm{~cm}$ diameter 27
27. Stems $3-5 \mathrm{~cm}$ diameter or acaulescent adults; leaves $8-15$ or more, usually bifid, leaf sheaths brownish. . 28
27. Stems $\leq 2 \mathrm{~cm}$ (to 3 cm in Chamaedorea pinnatifrons) diameter; leaves mostly-8; bifid or not; leaf sheaths green.
28. Apparently acaulescent (stems short, underground); leaves usually not simple; inflorescences spicate and with a deciduous bract (leaving a conspicuous scar) near the apex of the peduncle; fruits obovoid to 2 cmdiameter, green to black

Calyptrogyne ghiesbreghtiana
28. Stems not underground (as adults), 3-5 cm diameter; leaves bifid; inflorescences branched, fruits reddish Asterogyne martiana
29. Leaf blades bifid, leathery, rigid, with a velvety aspect, blue-gray-green; female infl. spicate, male infl. with 2-10 branches
. Chamaedorea adscendens
29. Leaf blades bifid or not, thin, not blue-gray-green . . 30
30. Leaves bifid for $1 / 3$ of their length, but usually some leaves pinnate; stem $\leq 0.75 \mathrm{~m}$ tall, often apparently stemless; female infl. spicate or bifurcate, male infl. with $10-25$ branches *Chamaedorea pygmae
30. Leaves bifid for $\geq 1 / 3$ of their length; stem conspicuous, potentially $\geq 0.75 \mathrm{~m}$.
31. Leaf blade obscurely nerved above, more or less oblong; female infl. usually with up to 3 flowering branches, male infl. with 1-6 branches

Chamaedorea geonomiformis
31. Leaf blade prominently nerved above, more or less obovate; female infl. with >3 flowering branches or spicate
32. Blades thick, simple, with ≥ 12 major veins per side; female infl. usually spicate, rarely with up to 4 branches, male infl. with 13-25 branches .
. Chamaedorea ernesti-augusti
32. Blades thin, rarely all simple, with ≤ 10 major veins per side; female infl. usually with up to 20 flowering branches, rarely spicate, male infl. with 2-45 branches

Chamaedorea pinnatifrons
33. Stems solitary 34
33. Stems clumped. 54
34. Apparently acaulescent (stem short, underground); with 8-21 leaves inflorescences spicate
34. Stems evident in mature palms; leaves usually ≤ 8 (to 12 in Synechanthus) inflorescences branched (except in Chamaedorea nationsiana)
35. Stems green; leaves clustered at stem apex, often ≤ 736
35. Stems not green, and/or leaves spread loosely along the stem; leaves often >7
36. Leaflets many (>10) per side and arranged in groups of 2-6; sub-apical leaflets with one principal vein; monoecious; flowers arranged in rows along the flowering axes

Synechanthus fibrosus
36. Leaflets few or many per side, not arranged in groups
of 2-6, sub-apical leaflets without one principal vein; dioecious; flowers solitary or in groups 3
37. Leaves leathery and leaflets $\leq 3.5 \mathrm{~cm}$ wide, leaflets 2-6 per side, rigid and with a velvety aspect, blue-gray-green; female infl. spicate, male infl. with 2-10 branches

Chamaedorea adscendens
37. Leaves thin and/or leaflets wider, rigid or not, green in color

38
38. Leaflets mostly ≤ 10 per side; stems usually $<2 \mathrm{~cm}$ diameter.
38. Leaflets ≥ 10 per side, stems variable. ${ }_{3} 42$
39. Leaflets thick, leathery, lanceolate to oblong; leaflets with a dominant midrib and 2 submarginal, obscure, unkeeled 10 nerves; apex of leaf sheath whitish; infl. with $6-25$ branches \qquad Chamaedorea oblongata
39. Leaflets thin, sigmoid or lanceolate, 10 nerves conspicuous and/or keeled; leaf sheath apex green 40
40. Leaflets sigmoid, with ≤ 710 nerves; inflorescences branched

41
40. Leaflets lanceolate with 8-9 prominent 10 nerves; female, male inflorescences spicate; flowers greenish

* Chamaedorea nationsiana

41. Leaflets 4-8/side with 2-7 angular 10 nerves; stem to 3 cm diameter; female flowers greenish; female, male infl. mostly with 5-20 branches.

Chamaedorea pinnatifrons

41. Leaflets to $11 /$ side with 2 marginal, rounded 10 nerves; stem to 1.6 cm diameter; female flowers orange; female infl. with 4-8 branches, male infl. to 20 branches
*Chamaedorea sartori
42. Small, slender palms $<2 \mathrm{~cm}$ diameter and $>2 \mathrm{~m}$ tall; leaf sheaths tubular near base; leaflets $11-21 /$ side, linear to lanceolate, contracted at base; female, male infl. with $5-35$ branches \qquad Chamaedorea elegans
43. Small to medium-sized palms, $2-10 \mathrm{~cm}$ diameter, 2-12 m tall; leaf sheaths tubular for \pm entire length; leaflets not contracted at base .
44. Leaflets linear-lanceolate or lanceolate; female infl. with c. 50 branches, or spicate.
45. Leaflets sigmoid, to 25 per side; female infl. with 5-20 flowering branches, male infl. with 7-50 branches .
. Chamaedorea tepejilote
46. Leaf sheaths $\geq 30 \mathrm{~cm}$ long, smooth, green to thinly brown-edged; leaflets linear-lanceolate, to 36 per side; female infl. with c. 50 flowering branches. .

Chamaedorea woodsoniana

44. Leaf sheath to 30 cm long, rough, conspicuously brown-edged; leaflets lanceolate, to 11 per side; inflorescences spicate *Chamaedorea nationsiana
45. Leaves 7-18, loosely spread apart along the stem; stems brown or green, usually clumped, $0.5-3 \mathrm{~cm}$ diameter Geonoma deversa
46. Leaves 6+, clustered at stem apex; stems not green, usually solitary and $>3 \mathrm{~cm}$ diameter (except Reinhardtia)
47. Leaflets 4 -ranked, spreading in 4 different planes and giving leaves a plumose appearance; stem to 15 cm diameter; leaves 6-8; crown open; fruits red; palm of rocky places over limestone at low elevations

.Gaussia maya

46. Leaflets generally spreading in 1-2 planes; stems large or small; leaves often <8; crown usually dense; fruits red or not; on limestone soils or not
47. Leaves with brown scales on lower surface; salt-tolerant, found near the sea; stem to 30 cm diameter;
fruits red Pseudophoenix sargentii subsp.sargentii
48. Leaves without brown scales beneath; most commonly found in wet or moist forest; fruits brown or blackish.
49. Leaves very large ($2-8 \mathrm{~m}$ long), erect and irregularly divided into wide leaflets with serrated apical margins, persistent and forming a skirt around the stem; stems $15-20 \mathrm{~cm}$ diameter; fruits large ($4-6 \mathrm{~cm}$ diameter), brown, covered in pyramidal protrusions; on wet, lowland soils Manicaria saccifera
50. Leaves smaller, generally $<3 \mathrm{~m}$ long, arching or erect, regularly divided, persistent or not, but never forming a skirt around the stem; leaflets not serrated (but apically toothed in Reinhardtia gracilis); stem diameter large or small; fruits small, <2 cm diameter, black or purple-black, fleshy .
51. Leaflets few, usually 2 per side; slender palm $<2 \mathrm{~cm}$ diameter, leaf sheaths closed but not forming a crownshaft (forming interwoven fibers instead) 50
52. Leaflets many, often $>10 /$ side; stem much larger; crownshaft present in Euterpe
53. Leaves large: leaf rachis $11-23 \mathrm{~cm}$ long, with 14-22 nerves on each side; the lower pinnae $14.5-25 \mathrm{~cm}$ long Reinhardtia gracilis var. gracilis
54. Leaves small: leaf rachis $3.5-6 \mathrm{~cm}$ long, with $8-11$ nerves on each side; the lower pinnae $8.5-12 \mathrm{~cm}$ long Reinhardtia gracilis var. gracilior
55. Stem gray, with a green crownshaft formed by closed leaf sheaths; tall (to 20 m), to 23 cm diameter; leaves $5-10$; leaflets linear; fruits 1 cm diameter, purpleblack Euterpe precatoria var. longevaginata
56. Stem brown, with a (purplish) crown shaft only in Prestoea, $\leq 10 \mathrm{~m}$ tall, to 20 cm ; leaves 6-20; fruits <7 mm, black.52
57. Crownshaft open, purplish or purple-green; stem to 20 cm diameter \qquad
58. Crownshaft absent; stem to 15 cm diameter 53
59. Montane rainforest palm; rare; leaflets \pm linear; pits in flowering branches with a lower and upper lip ...

. Geonoma undata

53. Most common in lowland and pre-montane forests as well as on mountain slopes, sometimes in disturbed areas; leaflets sickle-shaped; pits in flowering branches without a distinct upper lip.
. .Geonoma interrupta var. interrupta
54. Stems green and leaves tightly clustered at stem apex
55. Stems not green or leaves loosely clustered at stem apex ..
56. Stems, sheath, petiole, and rachis often glaucous; leaflets 22-42 per side; stems $2-3 \mathrm{~cm}$ diameter; female, male infl. with 10-35 branches .
.Chamaedorea graminifolia
57. Not glaucous; leaflets usually >22 per side......... 56
58. Stems sometimes clumped, $2-10 \mathrm{~cm}$ diameter, to 7 m tall; leaflets wide ($3.5-10 \mathrm{~cm}$) and long ($16-70 \mathrm{~cm}$), $6-25$ per side, with several prominent 10 nerves above; female infl. with up to 20 branches, male infl. with up to 50 branches Chamaedorea tepejilote
59. Stems always clumped, $1-2 \mathrm{~cm}$ diameter, to 3 m tall; leaflets narrow ($\leq 3 \mathrm{~cm}$) and short ($20-35 \mathrm{~cm}$), 5-18 per side, with one 10 nerve; female, male infl. with 4-12 branchesChamaedorea seifrizii
60. Leaflets numerous (usually $>20 /$ side, at least $>3 /$
side), without "windows" between the folds and the rachis58
61. Leaflets usually >4 per side, or $2-3$ compound leaflets with small windows between the folds on either side of the rachis
62. Crownshaft formed by closed, or partially closed leaf sheaths present, stem to $20+\mathrm{cm}$ diameter; leaflets \pm uniform in size, linear.
63. Crownshaft absent; leaflets sickle-shaped, broad ones intermixed with narrow ones; stems $2-12 \mathrm{~cm}$ diameter Geonoma interrupta var. interrupta
64. Montane palms with a partially closed (for $1 / 3$ to $1 / 2$ * the length of the leaf sheaths), purplish or purplegreen crownshaft; stem brownish .
*Prestoea acuminata
65. Montane or lowland palms with conspicuously closed, green or yellowish crownshaft; stem gray . .
.Euterpe precatoria var. longevaginata
66. Leaves clustered at the apex, with compound leaflets having small windows between the folds on either side of the rachis
67. Leaves loosely spread apart along the stem, without windows; stem $\leq 3 \mathrm{~cm}$ diameter Geonoma deversa
68. Stems thick, c. 6-7 cm diameter; leaf blades $\geq 1 \mathrm{~m}$

69. Stems c. 1.5 cm diameter; leaf blades $\geq 1 \mathrm{~m}$. (usually $<0.5 \mathrm{~m}$)

62
62. Leaves large: leaf rachis $11-23 \mathrm{~cm}$ long, with $14-22$ nerves on each side; the lower pinnae $14.5-25 \mathrm{~cm}$ longReinhardtia gracilis var. gracilis
62. Leaves small: leaf rachis $3.5-6 \mathrm{~cm}$ long, with $8-11$ nerves on each side; the lower pinnae $8.5-12 \mathrm{~cm}$ long

Reinhardtia gracilis var. gracilior

Acknowledgments

I am grateful to Greg de Nevers and Marcel Rejmánek for their thoughtful comments on the manuscript and to the Conservation Unit of the Forest Department, Ministry of Natural Resources, for granting me permission to conduct research in Belize.

Literature Cited

Balick, M. and D. Johnson. 1994. The conservation status of Schippia concolor Burret in Belize. Principes 38(3): 124-128
Durân, R. 1995. Pseudophoenix sargentii: an Endangered Palm Species. Principes 39(4): 219-224.
Henderson, A., Galeano, G., and R. Bernal. 1995. Field Guide to the Palms of the Americas. Princeton University Press, Princeton, New Jersey, USA.
Meerman, J.C. and G. Williams. 1995. Maya mountain traverse expedition, January 16-February 4, 1995. Belize Tropical Forest Studies Publication \# 3. Belize Tropical Forest Studies, Belmopan, Belize.
Standley, P.C. and S.J. Record. 1936. The forests and flora of British Honduras. Field Museum of Natural History, Botany Series 12: 1-432.
Standley, P.C. and J. A. Steyermark. 1958. Flora of Guatemala. Fieldiana: Botany 24(1): 196-299.

