Palms, 43(2), 1999, pp. 88-90

Palms in Subtropical Climates

KATHERINE MAIDMAN

Fairchild Tropical Garden, 10901 Old Cutler Road, Miami, FL 33156 USA

In the transition zone between the tropics and the temperate zones are conditions for growing an amazing diversity of palms. This zone of mild climates, the subtropics, extends north from the Tropic of Cancer and south from the Tropic of Capricorn with varying outer limits between 30° and 40° latitudes around the world. This temperature range and seasonal rainfall pattern define palm growing in the subtropics. This discussion focuses on the humid parts of these middle latitudes that are characterized by long, warm to hot summers and mild winters. The humid subtrop-

1. A new planting with mulch to conserve soil moisture and suppress weeds.

2. Cold sensitive palms are grown in the subtropics by taking advantage of microclimates. *Gulubia costata* survived winter lows to -3°C (27°F) in an area at Fairchild Tropical Garden sheltered from wind by tall trees and dense shrubbery.

MAIDMAN: PALMS IN SUBTROPICAL CLIMATES

Outstanding Palms for the Subtropical Landscape.

All tolerate full-sun and a range of cultural conditions, with special needs and exceptions as noted: AD-deficiencies in alkaline soil, AL-best in alkaline soil, C-cold tender, M-requires ample moisture, sh-shade before establishment, SH-prefers/requires some shade. An asterisk (*) indicates that other species within the genus are also recommended. Name Ornamental Considerations

Archontophoenix purpurea* AD	reddish-purple crownshaft
Balaka seemannii SH	small specimen plant
Beccariophoenix madagascariensis AD	long, bold leaves
Bismarckia nobilis	bold form and color
Borassus aethiopum M	large and stately
Carpentaria acuminata M	attractive red fruit
Chambeyronia macrocarpa M	red new leaves
Chamaedorea ernesti-augusti* SH	small-scale specimen
Chuniophoenix hainanensis SH	small, fan-leaved clumping
Coccothrinax crinita ssp. crinita*	long fibers on trunk
Copernicia baileyana*	strong form
Cocos nucifera C	for warmest subtropics
Dictyosperma album	for tropical effect
Drymophloeus beguinii M,SH	bold leaf texture
Euterpe edulis sh	drooping leaflets
Dypsis decaryi*	unusual crown form
Gastrococos crispa	strong form
Guihaia argyrata SH	short; clumping
Heterospathe elata C	graceful spreading leaves
Howea forsteriana sh	for cool subtropics
Hyophorbe lagenicaulis	bottle-shaped trunk
Kentiopsis oliviformis	elegant form
Kerriodoxa elegans	grand palmate leaves
Licuala grandis* SH	undivided round leaves
Lytocaryum wedellianum SH	fine texture pinnate
Pinanga coronata M,SH	pinnate-leaved; clumping
Pseudophoenix vinifera* AL	bottle-shaped trunk
Ptychosperma elegans*	very adaptable
Raphis excelsa	fan-leaved; clumping
Roystonea regia*	large and stately
Satakentia liukiuensis C	burgundy crownshaft
Schippia concolor AL	large white fruits
Siphokentia beguinii SH	irregularly divided leaves
Syagrus amara*	for tropical effect
Thrinax morrisii AL	silver leaf underside
Veitchia arecina C	striking in groups
Washingtonia robusta	tall and stately
Zombia antillarum	unusual spiny sheaths

cally palms of the deep tropics and the cool high altitude rainforest and temperate regions.

The subtropics are often termed mild in climate but the temperature range can affect the placement and care of palms in the landscape. Planting for example is commonly done in the spring so that the plants are established during the summer heat and rain before the winter low temperatures. A sheltered position is required for the most tropical palms such as *Marojejya*, *Cyrtostachys*, and *Pigafetta*, which are marginal palms for the subtropics. As in temperate climates, palms are covered with burlap or other temporary shelters during extreme winter temperatures. The effects of summer temperatures are dealt with in the placement of palms and attention to water needs.

Water is one of the most important concerns in the subtropics. While there are palms that tolerate dry periods with no help once they are established in the landscape, most perform better with supplementary watering, and many palms require it. Palm growers consider the natural environment of a species for guidelines. Palms of the deep tropics and shade-loving palms of forest understories such as *Geonoma*, *Clinostigma*, and *Pinanga* often need regular irrigation in the subtropics. In general, tropical palms will respond to watering with faster growth rates. Mulching is also beneficial as a means of conserving water. Mulching around palms contributes to soil moisture, aids in water penetration, and helps moderate soil temperature.

Many palms of typically dry habitats can be grown well in the subtropics. Examples are *Chamaedorea* (Mexican species), *Coccothrinax*, and *Gaussia*. The exceptions, while difficult to generalize, are palms intolerant of both the heat and moist conditions. In Miami, Florida, *Jubaea*, *Trithrinax*, and *Trachycarpus* are examples of palms that do not thrive because of this combination.

Fertilizing helps maintain the health and vigor of palms that must adapt to different climates and soils. In particular well-fertilized palms are better able to combat the effects of winter low temperatures that weaken many palms, making them more susceptible to disease and pest problems. The range of fertilizers and practices defies generalizations, but regular application of a balanced complete fertilizer is recommended as a basic program. Local growers and agricultural agencies can provide the fertilizer recommendations for your specific soils.

Palms have few pest and disease problems in the subtropics. Common insect pests of palms such as scale insects, mealy bugs, palm aphids, banana moths, and other Lepidoptera species can be controlled and do not seriously harm the plants. A few pests and diseases are chronic problems and cause fatalities. Lethal yellowing and ganoderma are incurable and spreadable diseases that have resulted in tremendous losses in ornamental palms. In areas where they occur growers should avoid using susceptible palms in the landscape. Native palms offer resistance to pests and disease as well as tolerance of less than desirable temperature, water, and soil conditions. A recommendation for minimizing losses is aiming for diversity. Native species can be the staple landscape plants that require little care and free a palm grower to experiment with riskier introduced species.

